Formulae, Equations and Amounts of Substance - Mark Scheme

Q1.

Question number	Answer	Additional guidance	Mark
(a)	An explanation that makes reference to the following points: • (I) is incorrect because the solutions are aqueous or ions are (in the) aqueous (state) the state symbols should be (aq) instead of (I)	Allow silver nitrate and sodium chloride are aqueous Do not award if incorrect state symbol for one of the species in the equation e.g. Ag is (s) / AgCl is (aq)	(2)
	silver ions should have one positive charge / Ag+ or silver chloride is AgCl	Ignore just the charge on the silver ion is incorrect / the formula of silver chloride is incorrect	

Question number	Ar	nswer	Additional guidance	Mark
_	•	calculation of mol of C, H and Cl (1) calculation of empirical formula (1) calculation of molecular formula (1)	Example of calculation: C: H: CI mol 3.09: 0.26: 9.15 12: 15: 35.5 = 0.2575: 0.26: 0.2577 (ratio 1: 1: 1)	Mark (3)
			Ignore SF in mol and ratio Correct molecular formula with some working scores (3) Alternative method scores (3) no. C atoms = $\frac{3.09 \times 97}{12.5 \times 12} = 2 / 1.9982$ no. H atoms = $\frac{0.26 \times 97}{12.5 \times 1} = 2(.0176)$ no. Cl atoms = $\frac{9.15 \times 97}{12.5 \times 35.5} = 2$	

Question number	Answer	Additional guidance	Mark
(c)(i)	all 4 ion formulae all 4 (corresponding) m / z values	Example of answer: ions	(2)

Question number	Answer	Additional guidance	Mark
(a)(i)	dot-and-cross diagram	Allow overlapping circles Allow all dots / all crosses Allow dots and crosses in any order in the triple bond Allow the dots and crosses side-by-side in the triple bond e.g. x o x o x o x o x o x o x o x	(1)

Question number	Answer	Additional guidance	Mark
(a)(ii)	calculation of moles of nitrogen atoms	Example of calculation: $mol\ N_2 = \frac{5.60}{28} = 0.20$ and $mol\ N\ atoms = 0.20\ x\ 2 = 0.40$	(2)
	calculation of number of nitrogen	or $\frac{5.60}{14}$ = 0.40 number of N atoms = 0.40 x 6.02 x 10 ²³ =2.408 x 10 ²³ / 2.41 x 10 ²³ /2.4 x 10 ²³	
	atoms	TE on moles of nitrogen Ignore SF except 1SF Correct answer with no working scores (2)	

Question number	Answer	Additional guidance	Mark
(a)(iii)	100 001	Example of calculation:	(4)
	conversion of volume to m³ (1)	volume of $N_2 = 108 = 1.08 \times 10^{-4} \text{ m}^3$ 1 x 10 ⁶	
	conversion of	temperature = 25 + 273	
	temperature to K (1)	= 298 K n = <u>pV</u> RT	
	rearrangement of ideal gas equation (1)	or $n = \frac{1.36 \times 10^5 \times 1.08 \times 10^{-4}}{8.31 \times 298}$	
		TE on volume and temperature	
		$n = 5.9312 \times 10^{-3} / 0.0059312$ (mol) Conditional on correctly rearranged	
	evaluation to give n	equation in M3 Ignore SF except 1SF	
	(1)	Correct answer with no working scores full marks	8

Question number	Answer	Additional guidance	Mark
3(b)	dipole on bromine molecule and final product (1) curly arrow from C=C to Br and curly arrow from Br-Br to, or just beyond, Br (1) intermediate (1) lone pair on Brand curly arrow from lone pair to positive charge (1)	Example of mechanism: H CH3	(4)

Question number	Answer	Additional guidance M	//ark
3(c)(i)	skeletal formula	Example of skeletal formula:	(1)
		Ignore bond lengths and bond angles Do not allow O-H-C horizontally	

Question number	Answer	Additional guidance	Mark
(From)purple (to) colourless	(From)purple (to) colourless	Both colours needed for the mark	(1)
		Allow pink or violet for purple	
		Ignore clear	

Question number	Answer	Additional guidance	Mark
3(c)(iii)	hydrogen bromide / HBr	Ignore state symbols (g) / (l) / (aq) / (s)	(1)
	000 C 0 40 A 92 2574 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Do not award bromine	

Question number	Answer	Additional guidance	Mark
3(c)(iv)	An explanation that makes reference to the following points:		(2)
	(2-bromo-2-methylpropane is formed from a) tertiary carbocation / tertiary intermediate (1)	Allow a description of a tertiary carbocation Do not award secondary carbocation for M1	
		Allow primary carbocation is less stable than tertiary	
	(tertiary carbocation / intermediate) is more stable than primary (carbocation) or a tertiary carbocation is the most stable (1)	Allow secondary carbocation is more stable than primary, if secondary carbocation identified in M1	
		Ignore just 'tertiary carbocation is more stable'	
		Ignore any explanation of why one cation is more stable than another	
		Ignore any reference to Markovnikov's rule	
		Do not award tertiary product is more stable (than primary)	

Question number	Answer		Additional guidance	Mark
3(d)	4 carbon atoms linked by single bonds and both extension bonds rest of structure correct	(1)	Example of repeat units: H CH3 H CH3	(2)

Question number	Answer	Additional guidance	Mark
3(e)	calculation / working of mol of alcohol (1)	Example of calculation: mol alcohol used = <u>6.85</u> = 0.092568 / 9.2568 x 10 ⁻² 74	(4)
	calculation / working of mol of alkene if 58.2% (1)	mol alkene if 58.2% = 0.092568 x <u>58.2</u> 100 = 0.053874 / 5.3874 x 10 ⁻² TE on mol alcohol	
	calculation / working of mass of alkene (1)	mass alkene = 0.053874 x 56 = 3.017 (g) TE on mol alkene	
	answer given to 2 or 3 SF (1)	answer to 2 or 3 SF = 3.0 / 3.02 (g) Conditional on working involving 74 and 56 Correct answer to 2 or 3SF with or without working scores (4)	
	Alternative method for M2 and M3 calculation / working of theoretical mass of alkene (1)	Alternative method for M2 and M3 mass alkene if 100% = 0.092568 x 56 = 5.1838 (g) TE on mol alcohol	
	calculation / working of actual mass of alkene (1)	mass alkene if 58.2% = 5.1838 x <u>58.2</u> = 3.017 (g) 100 TE on theoretical mass	

Q4.

Question number	Answer	Additional guidance	Mark
(a)	• [Ar]3d ¹⁰ 4s ² 4p ⁵	Allow 4s ² 3d ¹⁰ 4p ⁵ Ignore 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ for (Ar) written out but do not allow incorrect electronic configuration for Ar	1

Question number	Answer					Additional guidance	Mark
(b)(i)						1 mark for each row	2
	Species	Protons	Neutrons	Electrons		correct	
	⁷⁹ Br	35	44	35	(1)		
	81Br-	35	46	36	(1)		

Question number	Answer	Additional guidance	Mark
(b)(ii)	·	Example of calculation:	2
	calculation of amount (1) (mol) of Br ₂	Amount of Br ₂ = $\frac{2.00}{160}$ = 0.0125 (mol)	
	• calculation of molecules of (1) Br ₂	Molecules of Br ₂ = $0.0125 \times 6.02 \times 10^{23}$ = 7.525×10^{21}	
		or	
		Amount of Br ₂ = $\frac{2.00}{(2 \times 79.9)}$ = 0.012516 (mol)	
		Molecules of $Br_2 = 0.012516 \times 6.02 \times 10^{23}$ = 7.5344×10^{21}	
		TE on amount Br ₂	
		Correct answer with no working scores both marks	
		Ignore SF except 1 SF	470

Question number	Answer	Additional guidance	Mark
(c)		Example of calculation:	4
	• conversion of volume to m ³ (1)	Volume of bromine = $\frac{200}{1 \times 10^6}$ = 2.00 × 10 ⁻⁴ m ³	
	conversion of temperature (1) to K	77+273 = 350	
	rearrangement of expression (1)	$1.51 \times 10^5 \times 2.00 \times 10^{-4} = n \times 8.31 \times 350$ TE on volume bromine	
	• evaluation to give n (1)	$n = \frac{1.51 \times 10^5 \times 2.00 \times 10^{-4}}{8.31 \times 350}$	
		n = 1.03834 × 10 ⁻²	
		Ignore SF except 1SF	
		Correct answer with no working scores full marks	

Q5.

Question number	Answer	Mark
	C 30.0	1

Q6.

Question number	Answer	Mark
	C 0.20	1

Q7.

Question number	Answer	Mark
	$B = C_5H_{12}$	1

Q8.

Question number	Answer	Mark
	B (C₄H ₇ Cl)	1

Question number	Answer	Additional guidance	Mark
(a)	H H H H H H H (1)	Allow CH ₃ in branches	3
	+ H H H H H H H H H H H H H H H H H H H	Allow 2 marks for 3 correct structural or skeletal formulae or any combination of these	
	H (1) H—C—H H H H—C—C—C—H H H H—C—H H H		

Question number	Answer	Additional guidance	Mark
(b)	2,4-dimethylhexane	Ignore punctuation errors	1

Question number	Answer	Additional guidance	Mark
(c)	• molecular formula: C ₅ H ₁₂ (1)		2
	• boiling temperature 25 - 40 °C (1)	Allow any temperature or range within the given range	

Question	Answer	Additional guidance	Mark
number			
(d)(i)	• $C_3H_8 + 3\frac{1}{2}O_2 \rightarrow C + CO + CO_2 + 4H_2O$	Allow multiples Ignore state symbols, even if incorrect	1

Question number	Answer		Additional guidance	Mark
(d)(ii)	An explanation that makes reference to the following points: • (carbon monoxide) reacts with haemoglobin (in the blood) • preventing it from carrying oxygen (around the body).	(1) (1)	Allow forms carboxyhaemoglobin	2

Question number	Answer	Additional guidance	Mark
(e)(i)	3 0 1 7	Allow equations in either	2
	• C_3H_7 • + $Cl_2 \rightarrow C_3H_7Cl$ + Cl • (1)	order Penalise missing • once only	
	$\bullet C_3H_7\bullet + Cl_2 \rightarrow C_3H_7Cl + Cl \bullet $	Penalise missing • once only	

Question number	Answer	Additional guidance	Mark
(e)(ii)	 the products are 1-chloropropane and 2- 	Allow any unambiguous	1
	chloropropane	formulae	
		Ignore molecular formulae	

Question number	Answer	Additional guidance	Mark
(e)(iii)	the chlorine free radical can remove a hydrogen from either the end carbon atoms or the central carbon atom		1

Question number	Answer	Additional guidance	Mark
(e)(iv)	two propyl (free) radicals react together or	Ignore just '(two free) radicals react together'	1
	 C₃H₇• + C₃H₇• → C₆H₁₄ 	Do not allow molecules/ions	

Question number	Answer		Additional guidance	Mark
(e)(v)	structure corresponding name	(1) (1)	CH CHCICH CL 4.2 - 1/- 1/- 1	2

Q10.

Question number	Answer	Mark
	The only correct answer is A $(Ca + 2HNO_3 \rightarrow Ca(NO_3)_2 + H_2)$	(1)
	B is incorrect because the formulae of nitric acid and calcium nitrate are incorrect	
	C is incorrect because the formula of nitric acid is incorrect D is incorrect because the formula of calcium nitrate is incorrect	

Q11.

Question number	Answer	Mark
	The only correct answer is B (0.424 g)	(1)
	A is incorrect because this is the answer using a molar mass of 83 g mol⁻¹ from NaCO₃	
	C is incorrect because this is the answer just using the volume and a concentration of 1 mol dm ³	
	D is incorrect because this is the answer just using the concentration and not the volume	

Q12.

Question number	An	swer	Mark
	The	e only correct answer is A $(6.0 \times 10^{-2} \text{ g})$	(1)
	В	is incorrect because 12 x 10 ⁻⁶ has been multiplied by 5 instead of 5000	
	С	is incorrect because 12 x 10 ⁻⁶ has been divided by 5 instead of multiplied by 5000	
	D	is incorrect because 12×10^{-6} has been divided by 5000 instead of multiplied	

Q13.

Question number	Ans	swer	Mark
	The	e only correct answer is A (0.36 dm³)	(1)
	B C	is incorrect because the 2:1 mole ratio has not been used is incorrect because the mole ratio has been used as 1:2 instead of 2:1	
	D	is incorrect because the mass has not been converted to moles	

Q14.

Question number	Answer	Mark
	D 1.2 dm ³ of nitrogen, N ₂ , and 1.2 g of magnesium, Mg	1

Question number	Answer	Additional guidance	Mark	
(a)(i)		Examples of equation:	1	
	correct balanced ionic equation with state symbols	$MgO(s) + 2H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_2O(l)$ or		
		$MgO(s) + 2H_3O^+(aq) \rightarrow Mg^{2+}(aq) + 2H_2O(l)$		

Question number	Answer		Additional guidance	Mark
(a)(ii)		•	Example of calculation:	3
	calculation of moles of MgO	(1)	moles MgO = $\frac{2.45}{40.3}$ = 0.060794	
	calculation of moles of HCl	(1)	moles HCl = 2 × 0.060794 = 0.121588	
	calculation of volume of HCl	(1)	volume HCl = 0.121588 × <u>1000</u> = 60.794 cm ³	
			2.00 Ignore SF except 1 SF	
			Allow use of $A_r(Mg) = 24 (61.25 \text{ cm}^3)$	
			Correct answer with no working scores full marks	

Question number	Answer	0	Additional guidance	Mark
(b)	Either • calculation of moles of MgCO ₃ • calculation of	(1) (1)	Example of calculation: moles $MgCO_3 = \frac{2.25}{84.3} = 0.02669$ mass $MgCl_3 = 0.02669 \times 95.3 = 2.5436$ (g)	2
	mass of MgCl ₂ or • use of both molar masses	(1)	or 84.3 g MgCO ₃ makes 95.3 g MgCl ₂	
	calculation of mass of MgCl ₂	(1)	so 2.25 g MgCO $_3$ makes $\frac{95.3}{84.3}$ × 2.25 = 2.5436 (g) MgCl $_2$ Ignore SF except 1 SF	
			Allow use of A_r (Mg) = 24 (2.5446 g) Correct answer with no working scores full marks	8.

Question number	Answer		Additional guidance	Mark
(c)	An explanation that makes reference to the following points:		Ignore calculations	2
	(in the reaction with magnesium oxide) there are fewer waste products/no carbon dioxide is released/water is the only waste product	(1)	Allow reverse arguments	
	so the molar mass of all products is lower/the denominator of the equation for atom economy is lower	(1)		
	or			
	1 mol of magnesium compound produces 1 mol of magnesium chloride	(1)		
	 but the M_r of magnesium carbonate is greater than the M_r of magnesium oxide/carbon dioxide is an additional waste product from magnesium carbonate. 	(1)		